Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Automated Code Reviews: Learning from Experience (2402.03777v1)

Published 6 Feb 2024 in cs.SE

Abstract: Modern code review is a critical quality assurance process that is widely adopted in both industry and open source software environments. This process can help newcomers learn from the feedback of experienced reviewers; however, it often brings a large workload and stress to reviewers. To alleviate this burden, the field of automated code reviews aims to automate the process, teaching LLMs to provide reviews on submitted code, just as a human would. A recent approach pre-trained and fine-tuned the code intelligent LLM on a large-scale code review corpus. However, such techniques did not fully utilise quality reviews amongst the training data. Indeed, reviewers with a higher level of experience or familiarity with the code will likely provide deeper insights than the others. In this study, we set out to investigate whether higher-quality reviews can be generated from automated code review models that are trained based on an experience-aware oversampling technique. Through our quantitative and qualitative evaluation, we find that experience-aware oversampling can increase the correctness, level of information, and meaningfulness of reviews generated by the current state-of-the-art model without introducing new data. The results suggest that a vast amount of high-quality reviews are underutilised with current training strategies. This work sheds light on resource-efficient ways to boost automated code review models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com