Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Encoding Version History Context for Better Code Representation (2402.03773v1)

Published 6 Feb 2024 in cs.SE

Abstract: With the exponential growth of AI tools that generate source code, understanding software has become crucial. When developers comprehend a program, they may refer to additional contexts to look for information, e.g. program documentation or historical code versions. Therefore, we argue that encoding this additional contextual information could also benefit code representation for deep learning. Recent papers incorporate contextual data (e.g. call hierarchy) into vector representation to address program comprehension problems. This motivates further studies to explore additional contexts, such as version history, to enhance models' understanding of programs. That is, insights from version history enable recognition of patterns in code evolution over time, recurring issues, and the effectiveness of past solutions. Our paper presents preliminary evidence of the potential benefit of encoding contextual information from the version history to predict code clones and perform code classification. We experiment with two representative deep learning models, ASTNN and CodeBERT, to investigate whether combining additional contexts with different aggregations may benefit downstream activities. The experimental result affirms the positive impact of combining version history into source code representation in all scenarios; however, to ensure the technique performs consistently, we need to conduct a holistic investigation on a larger code base using different combinations of contexts, aggregation, and models. Therefore, we propose a research agenda aimed at exploring various aspects of encoding additional context to improve code representation and its optimal utilisation in specific situations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: