Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Outdated Fact Detection in Knowledge Graphs (2402.03732v1)

Published 6 Feb 2024 in cs.AI, cs.CL, cs.DL, and cs.LG

Abstract: Knowledge graphs (KGs) have garnered significant attention for their vast potential across diverse domains. However, the issue of outdated facts poses a challenge to KGs, affecting their overall quality as real-world information evolves. Existing solutions for outdated fact detection often rely on manual recognition. In response, this paper presents DEAN (Deep outdatEd fAct detectioN), a novel deep learning-based framework designed to identify outdated facts within KGs. DEAN distinguishes itself by capturing implicit structural information among facts through comprehensive modeling of both entities and relations. To effectively uncover latent out-of-date information, DEAN employs a contrastive approach based on a pre-defined Relations-to-Nodes (R2N) graph, weighted by the number of entities. Experimental results demonstrate the effectiveness and superiority of DEAN over state-of-the-art baseline methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets