Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A generalized decision tree ensemble based on the NeuralNetworks architecture: Distributed Gradient Boosting Forest (DGBF) (2402.03386v1)

Published 4 Feb 2024 in cs.LG and cs.AI

Abstract: Tree ensemble algorithms as RandomForest and GradientBoosting are currently the dominant methods for modeling discrete or tabular data, however, they are unable to perform a hierarchical representation learning from raw data as NeuralNetworks does thanks to its multi-layered structure, which is a key feature for DeepLearning problems and modeling unstructured data. This limitation is due to the fact that tree algorithms can not be trained with back-propagation because of their mathematical nature. However, in this work, we demonstrate that the mathematical formulation of bagging and boosting can be combined together to define a graph-structured-tree-ensemble algorithm with a distributed representation learning process between trees naturally (without using back-propagation). We call this novel approach Distributed Gradient Boosting Forest (DGBF) and we demonstrate that both RandomForest and GradientBoosting can be expressed as particular graph architectures of DGBT. Finally, we see that the distributed learning outperforms both RandomForest and GradientBoosting in 7 out of 9 datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube