Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

IGUANe: a 3D generalizable CycleGAN for multicenter harmonization of brain MR images (2402.03227v4)

Published 5 Feb 2024 in cs.CV, cs.AI, and cs.LG

Abstract: In MRI studies, the aggregation of imaging data from multiple acquisition sites enhances sample size but may introduce site-related variabilities that hinder consistency in subsequent analyses. Deep learning methods for image translation have emerged as a solution for harmonizing MR images across sites. In this study, we introduce IGUANe (Image Generation with Unified Adversarial Networks), an original 3D model that leverages the strengths of domain translation and straightforward application of style transfer methods for multicenter brain MR image harmonization. IGUANe extends CycleGAN by integrating an arbitrary number of domains for training through a many-to-one architecture. The framework based on domain pairs enables the implementation of sampling strategies that prevent confusion between site-related and biological variabilities. During inference, the model can be applied to any image, even from an unknown acquisition site, making it a universal generator for harmonization. Trained on a dataset comprising T1-weighted images from 11 different scanners, IGUANe was evaluated on data from unseen sites. The assessments included the transformation of MR images with traveling subjects, the preservation of pairwise distances between MR images within domains, the evolution of volumetric patterns related to age and Alzheimer$'$s disease (AD), and the performance in age regression and patient classification tasks. Comparisons with other harmonization and normalization methods suggest that IGUANe better preserves individual information in MR images and is more suitable for maintaining and reinforcing variabilities related to age and AD. Future studies may further assess IGUANe in other multicenter contexts, either using the same model or retraining it for applications to different image modalities. IGUANe is available at https://github.com/RocaVincent/iguane_harmonization.git.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.