Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Empowering Time Series Analysis with Large Language Models: A Survey (2402.03182v1)

Published 5 Feb 2024 in cs.LG

Abstract: Recently, remarkable progress has been made over LLMs, demonstrating their unprecedented capability in varieties of natural language tasks. However, completely training a large general-purpose model from the scratch is challenging for time series analysis, due to the large volumes and varieties of time series data, as well as the non-stationarity that leads to concept drift impeding continuous model adaptation and re-training. Recent advances have shown that pre-trained LLMs can be exploited to capture complex dependencies in time series data and facilitate various applications. In this survey, we provide a systematic overview of existing methods that leverage LLMs for time series analysis. Specifically, we first state the challenges and motivations of applying LLMs in the context of time series as well as brief preliminaries of LLMs. Next, we summarize the general pipeline for LLM-based time series analysis, categorize existing methods into different groups (i.e., direct query, tokenization, prompt design, fine-tune, and model integration), and highlight the key ideas within each group. We also discuss the applications of LLMs for both general and spatial-temporal time series data, tailored to specific domains. Finally, we thoroughly discuss future research opportunities to empower time series analysis with LLMs.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.