Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning solutions of parametric Navier-Stokes with physics-informed neural networks (2402.03153v1)

Published 5 Feb 2024 in cs.CE and cs.LG

Abstract: We leverage Physics-Informed Neural Networks (PINNs) to learn solution functions of parametric Navier-Stokes Equations (NSE). Our proposed approach results in a feasible optimization problem setup that bypasses PINNs' limitations in converging to solutions of highly nonlinear parametric-PDEs like NSE. We consider the parameter(s) of interest as inputs of PINNs along with spatio-temporal coordinates, and train PINNs on generated numerical solutions of parametric-PDES for instances of the parameters. We perform experiments on the classical 2D flow past cylinder problem aiming to learn velocities and pressure functions over a range of Reynolds numbers as parameter of interest. Provision of training data from generated numerical simulations allows for interpolation of the solution functions for a range of parameters. Therefore, we compare PINNs with unconstrained conventional Neural Networks (NN) on this problem setup to investigate the effectiveness of considering the PDEs regularization in the loss function. We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum. Our results show that PINN results in accurate prediction of gradients compared to NN model, this is clearly visible in predicted vorticity fields given that none of these models were trained on vorticity labels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube