Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Scams Using Large Language Models (2402.03147v1)

Published 5 Feb 2024 in cs.CR

Abstract: LLMs have gained prominence in various applications, including security. This paper explores the utility of LLMs in scam detection, a critical aspect of cybersecurity. Unlike traditional applications, we propose a novel use case for LLMs to identify scams, such as phishing, advance fee fraud, and romance scams. We present notable security applications of LLMs and discuss the unique challenges posed by scams. Specifically, we outline the key steps involved in building an effective scam detector using LLMs, emphasizing data collection, preprocessing, model selection, training, and integration into target systems. Additionally, we conduct a preliminary evaluation using GPT-3.5 and GPT-4 on a duplicated email, highlighting their proficiency in identifying common signs of phishing or scam emails. The results demonstrate the models' effectiveness in recognizing suspicious elements, but we emphasize the need for a comprehensive assessment across various language tasks. The paper concludes by underlining the importance of ongoing refinement and collaboration with cybersecurity experts to adapt to evolving threats.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen, L. Yang, X. Yi, C. Wang, Y. Wang et al., “A survey on evaluation of large language models,” arXiv preprint arXiv:2307.03109, 2023.
  2. W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223, 2023.
  3. J. Wu, S. Yang, R. Zhan, Y. Yuan, D. F. Wong, and L. S. Chao, “A survey on llm-gernerated text detection: Necessity, methods, and future directions,” arXiv preprint arXiv:2310.14724, 2023.
  4. M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. Shaikh, N. Akhtar, J. Wu, and S. Mirjalili, “A survey on large language models: Applications, challenges, limitations, and practical usage,” TechRxiv, 2023.
  5. X. Wu, R. Duan, and J. Ni, “Unveiling security, privacy, and ethical concerns of chatgpt,” 2023.
  6. S. R. Bowman, “Eight things to know about large language models,” arXiv preprint arXiv:2304.00612, 2023.
  7. W. Zhao, Y. Liu, Y. Wan, Y. Wang, Q. Wu, Z. Deng, J. Du, S. Liu, Y. Xu, and P. S. Yu, “knn-icl: Compositional task-oriented parsing generalization with nearest neighbor in-context learning,” 2023.
  8. A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and J. M. Zhang, “Large language models for software engineering: Survey and open problems,” 2023.
  9. X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, and H. Wang, “Large language models for software engineering: A systematic literature review,” arXiv preprint arXiv:2308.10620, 2023.
  10. A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, “Large language models in medicine,” Nature medicine, vol. 29, no. 8, pp. 1930–1940, 2023.
  11. J. Clusmann, F. R. Kolbinger, H. S. Muti, Z. I. Carrero, J.-N. Eckardt, N. G. Laleh, C. M. L. Löffler, S.-C. Schwarzkopf, M. Unger, G. P. Veldhuizen et al., “The future landscape of large language models in medicine,” Communications Medicine, vol. 3, no. 1, p. 141, 2023.
  12. P. Caven, “A more insecure ecosystem? chatgpt’s influence on cybersecurity,” ChatGPT’s Influence on Cybersecurity (April 30, 2023), 2023.
  13. M. Al-Hawawreh, A. Aljuhani, and Y. Jararweh, “Chatgpt for cybersecurity: practical applications, challenges, and future directions,” Cluster Computing, vol. 26, no. 6, pp. 3421–3436, 2023.
  14. J. Marshall, “What effects do large language models have on cybersecurity,” 2023.
  15. Y. Yao, J. Duan, K. Xu, Y. Cai, E. Sun, and Y. Zhang, “A survey on large language model (llm) security and privacy: The good, the bad, and the ugly,” arXiv preprint arXiv:2312.02003, 2023.
  16. P. Dhoni and R. Kumar, “Synergizing generative ai and cybersecurity: Roles of generative ai entities, companies, agencies, and government in enhancing cybersecurity,” 2023.
Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)