Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Exploration with PAC-Bayes (2402.03055v3)

Published 5 Feb 2024 in cs.LG

Abstract: Reinforcement learning for continuous control under delayed rewards is an under-explored problem despite its significance in real life. Many complex skills build on intermediate ones as prerequisites. For instance, a humanoid locomotor has to learn how to stand before it can learn to walk. To cope with delayed reward, a reinforcement learning agent has to perform deep exploration. However, existing deep exploration methods are designed for small discrete action spaces, and their successful generalization to state-of-the-art continuous control remains unproven. We address the deep exploration problem for the first time from a PAC-Bayesian perspective in the context of actor-critic learning. To do this, we quantify the error of the BeLLMan operator through a PAC-Bayes bound, where a bootstrapped ensemble of critic networks represents the posterior distribution, and their targets serve as a data-informed function-space prior. We derive an objective function from this bound and use it to train the critic ensemble. Each critic trains an individual soft actor network, implemented as a shared trunk and critic-specific heads. The agent performs deep exploration by acting epsilon-greedily on a randomly chosen actor head. Our proposed algorithm, named PAC-Bayesian Actor-Critic (PBAC), is the only algorithm to consistently discover delayed rewards on a diverse set of continuous control tasks with varying difficulty.

Summary

We haven't generated a summary for this paper yet.