Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruct Your Previous Conversations! Comprehensively Investigating Privacy Leakage Risks in Conversations with GPT Models (2402.02987v2)

Published 5 Feb 2024 in cs.CR, cs.CL, cs.AI, and cs.LG

Abstract: Significant advancements have recently been made in LLMs represented by GPT models. Users frequently have multi-round private conversations with cloud-hosted GPT models for task optimization. Yet, this operational paradigm introduces additional attack surfaces, particularly in custom GPTs and hijacked chat sessions. In this paper, we introduce a straightforward yet potent Conversation Reconstruction Attack. This attack targets the contents of previous conversations between GPT models and benign users, i.e., the benign users' input contents during their interaction with GPT models. The adversary could induce GPT models to leak such contents by querying them with designed malicious prompts. Our comprehensive examination of privacy risks during the interactions with GPT models under this attack reveals GPT-4's considerable resilience. We present two advanced attacks targeting improved reconstruction of past conversations, demonstrating significant privacy leakage across all models under these advanced techniques. Evaluating various defense mechanisms, we find them ineffective against these attacks. Our findings highlight the ease with which privacy can be compromised in interactions with GPT models, urging the community to safeguard against potential abuses of these models' capabilities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com