Papers
Topics
Authors
Recent
2000 character limit reached

Automated Cognate Detection as a Supervised Link Prediction Task with Cognate Transformer (2402.02926v1)

Published 5 Feb 2024 in cs.CL, cs.LG, and cs.SI

Abstract: Identification of cognates across related languages is one of the primary problems in historical linguistics. Automated cognate identification is helpful for several downstream tasks including identifying sound correspondences, proto-language reconstruction, phylogenetic classification, etc. Previous state-of-the-art methods for cognate identification are mostly based on distributions of phonemes computed across multilingual wordlists and make little use of the cognacy labels that define links among cognate clusters. In this paper, we present a transformer-based architecture inspired by computational biology for the task of automated cognate detection. Beyond a certain amount of supervision, this method performs better than the existing methods, and shows steady improvement with further increase in supervision, thereby proving the efficacy of utilizing the labeled information. We also demonstrate that accepting multiple sequence alignments as input and having an end-to-end architecture with link prediction head saves much computation time while simultaneously yielding superior performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: