Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Positive and negative sampling strategies for self-supervised learning on audio-video data (2402.02899v1)

Published 5 Feb 2024 in eess.AS

Abstract: In Self-Supervised Learning (SSL), Audio-Visual Correspondence (AVC) is a popular task to learn deep audio and video features from large unlabeled datasets. The key step in AVC is to randomly sample audio and video clips from the dataset and learn to minimize the feature distance between the positive pairs (corresponding audio-video pair) while maximizing the distance between the negative pairs (non-corresponding audio-video pairs). The learnt features are shown to be effective on various downstream tasks. However, these methods achieve subpar performance when the size of the dataset is rather small. In this paper, we investigate the effect of utilizing class label information in the AVC feature learning task. We modified various positive and negative data sampling techniques of SSL based on class label information to investigate the effect on the feature quality. We propose a new sampling approach which we call soft-positive sampling, where the positive pair for one audio sample is not from the exact corresponding video, but from a video of the same class. Experimental results suggest that when the dataset size is small in SSL setup, features learnt through the soft-positive sampling method significantly outperform those from the traditional SSL sampling approaches. This trend holds in both in-domain and out-of-domain downstream tasks, and even outperforms supervised classification. Finally, experiments show that class label information can easily be obtained using a publicly available classifier network and then can be used to boost the SSL performance without adding extra data annotation burden.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: