Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A Learning-Based Caching Mechanism for Edge Content Delivery (2402.02795v2)

Published 5 Feb 2024 in cs.NI, cs.DC, and cs.LG

Abstract: With the advent of 5G networks and the rise of the Internet of Things (IoT), Content Delivery Networks (CDNs) are increasingly extending into the network edge. This shift introduces unique challenges, particularly due to the limited cache storage and the diverse request patterns at the edge. These edge environments can host traffic classes characterized by varied object-size distributions and object-access patterns. Such complexity makes it difficult for traditional caching strategies, which often rely on metrics like request frequency or time intervals, to be effective. Despite these complexities, the optimization of edge caching is crucial. Improved byte hit rates at the edge not only alleviate the load on the network backbone but also minimize operational costs and expedite content delivery to end-users. In this paper, we introduce HR-Cache, a comprehensive learning-based caching framework grounded in the principles of Hazard Rate (HR) ordering, a rule originally formulated to compute an upper bound on cache performance. HR-Cache leverages this rule to guide future object eviction decisions. It employs a lightweight machine learning model to learn from caching decisions made based on HR ordering, subsequently predicting the "cache-friendliness" of incoming requests. Objects deemed "cache-averse" are placed into cache as priority candidates for eviction. Through extensive experimentation, we demonstrate that HR-Cache not only consistently enhances byte hit rates compared to existing state-of-the-art methods but also achieves this with minimal prediction overhead. Our experimental results, using three real-world traces and one synthetic trace, indicate that HR-Cache consistently achieves 2.2-14.6% greater WAN traffic savings than LRU. It outperforms not only heuristic caching strategies but also the state-of-the-art learning-based algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: