Papers
Topics
Authors
Recent
2000 character limit reached

Position: What Can Large Language Models Tell Us about Time Series Analysis (2402.02713v2)

Published 5 Feb 2024 in cs.LG and cs.AI

Abstract: Time series analysis is essential for comprehending the complexities inherent in various realworld systems and applications. Although LLMs have recently made significant strides, the development of artificial general intelligence (AGI) equipped with time series analysis capabilities remains in its nascent phase. Most existing time series models heavily rely on domain knowledge and extensive model tuning, predominantly focusing on prediction tasks. In this paper, we argue that current LLMs have the potential to revolutionize time series analysis, thereby promoting efficient decision-making and advancing towards a more universal form of time series analytical intelligence. Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering. We encourage researchers and practitioners to recognize the potential of LLMs in advancing time series analysis and emphasize the need for trust in these related efforts. Furthermore, we detail the seamless integration of time series analysis with existing LLM technologies and outline promising avenues for future research.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper: