Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Key-Graph Transformer for Image Restoration (2402.02634v1)

Published 4 Feb 2024 in cs.CV, cs.LG, and eess.IV

Abstract: While it is crucial to capture global information for effective image restoration (IR), integrating such cues into transformer-based methods becomes computationally expensive, especially with high input resolution. Furthermore, the self-attention mechanism in transformers is prone to considering unnecessary global cues from unrelated objects or regions, introducing computational inefficiencies. In response to these challenges, we introduce the Key-Graph Transformer (KGT) in this paper. Specifically, KGT views patch features as graph nodes. The proposed Key-Graph Constructor efficiently forms a sparse yet representative Key-Graph by selectively connecting essential nodes instead of all the nodes. Then the proposed Key-Graph Attention is conducted under the guidance of the Key-Graph only among selected nodes with linear computational complexity within each window. Extensive experiments across 6 IR tasks confirm the proposed KGT's state-of-the-art performance, showcasing advancements both quantitatively and qualitatively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube