Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ClipFormer: Key-Value Clipping of Transformers on Memristive Crossbars for Write Noise Mitigation (2402.02586v1)

Published 4 Feb 2024 in cs.LG and cs.ET

Abstract: Transformers have revolutionized various real-world applications from natural language processing to computer vision. However, traditional von-Neumann computing paradigm faces memory and bandwidth limitations in accelerating transformers owing to their massive model sizes. To this end, In-memory Computing (IMC) crossbars based on Non-volatile Memories (NVMs), due to their ability to perform highly parallelized Matrix-Vector-Multiplications (MVMs) with high energy-efficiencies, have emerged as a promising solution for accelerating transformers. However, analog MVM operations in crossbars introduce non-idealities, such as stochastic read & write noise, which affect the inference accuracy of the deployed transformers. Specifically, we find pre-trained Vision Transformers (ViTs) to be vulnerable on crossbars due to the impact of write noise on the dynamically-generated Key (K) and Value (V) matrices in the attention layers, an effect not accounted for in prior studies. We, thus, propose ClipFormer, a transformation on the K and V matrices during inference, to boost the non-ideal accuracies of pre-trained ViT models. ClipFormer requires no additional hardware and training overhead and is amenable to transformers deployed on any memristive crossbar platform. Our experiments on Imagenet-1k dataset using pre-trained DeiT-S transformers, subjected to standard training and variation-aware-training, show >10-40% higher non-ideal accuracies at the high write noise regime by applying ClipFormer.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.