Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Device Scheduling and Assignment in Hierarchical Federated Learning for Internet of Things (2402.02506v1)

Published 4 Feb 2024 in cs.DC and cs.LG

Abstract: Federated Learning (FL) is a promising machine learning approach for Internet of Things (IoT), but it has to address network congestion problems when the population of IoT devices grows. Hierarchical FL (HFL) alleviates this issue by distributing model aggregation to multiple edge servers. Nevertheless, the challenge of communication overhead remains, especially in scenarios where all IoT devices simultaneously join the training process. For scalability, practical HFL schemes select a subset of IoT devices to participate in the training, hence the notion of device scheduling. In this setting, only selected IoT devices are scheduled to participate in the global training, with each of them being assigned to one edge server. Existing HFL assignment methods are primarily based on search mechanisms, which suffer from high latency in finding the optimal assignment. This paper proposes an improved K-Center algorithm for device scheduling and introduces a deep reinforcement learning-based approach for assigning IoT devices to edge servers. Experiments show that scheduling 50% of IoT devices is generally adequate for achieving convergence in HFL with much lower time delay and energy consumption. In cases where reduction in energy consumption (such as in Green AI) and reduction of messages (to avoid burst traffic) are key objectives, scheduling 30% IoT devices allows a substantial reduction in energy and messages with similar model accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: