Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BRAIn: Bayesian Reward-conditioned Amortized Inference for natural language generation from feedback (2402.02479v2)

Published 4 Feb 2024 in cs.LG, cs.AI, cs.CL, and cs.HC

Abstract: Distribution matching methods for LLM alignment such as Generation with Distributional Control (GDC) and Distributional Policy Gradient (DPG) have not received the same level of attention in reinforcement learning from human feedback (RLHF) as contrastive methods such as Sequence Likelihood Calibration (SLiC), Direct Preference Optimization (DPO) and its variants. We identify high variance of the gradient estimate as the primary reason for the lack of success of these methods and propose a self-normalized baseline to reduce the variance. We further generalize the target distribution in DPG, GDC and DPO by using Bayes' rule to define the reward-conditioned posterior. The resulting approach, referred to as BRAIn - Bayesian Reward-conditioned Amortized Inference acts as a bridge between distribution matching methods and DPO and significantly outperforms prior art in summarization and Antropic HH tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 17 likes.

Upgrade to Pro to view all of the tweets about this paper: