Improved Upper Bound for the Size of a Trifferent Code (2402.02390v1)
Abstract: A subset $\mathcal{C}\subseteq{0,1,2}n$ is said to be a $\textit{trifferent}$ code (of block length $n$) if for every three distinct codewords $x,y, z \in \mathcal{C}$, there is a coordinate $i\in {1,2,\ldots,n}$ where they all differ, that is, ${x(i),y(i),z(i)}$ is same as ${0,1,2}$. Let $T(n)$ denote the size of the largest trifferent code of block length $n$. Understanding the asymptotic behavior of $T(n)$ is closely related to determining the zero-error capacity of the $(3/2)$-channel defined by Elias'88, and is a long-standing open problem in the area. Elias had shown that $T(n)\leq 2\times (3/2)n$ and prior to our work the best upper bound was $T(n)\leq 0.6937 \times (3/2)n$ due to Kurz'23. We improve this bound to $T(n)\leq c \times n{-2/5}\times (3/2)n$ where $c$ is an absolute constant.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.