Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Upper Bound for the Size of a Trifferent Code (2402.02390v1)

Published 4 Feb 2024 in cs.IT, cs.DM, math.CO, and math.IT

Abstract: A subset $\mathcal{C}\subseteq{0,1,2}n$ is said to be a $\textit{trifferent}$ code (of block length $n$) if for every three distinct codewords $x,y, z \in \mathcal{C}$, there is a coordinate $i\in {1,2,\ldots,n}$ where they all differ, that is, ${x(i),y(i),z(i)}$ is same as ${0,1,2}$. Let $T(n)$ denote the size of the largest trifferent code of block length $n$. Understanding the asymptotic behavior of $T(n)$ is closely related to determining the zero-error capacity of the $(3/2)$-channel defined by Elias'88, and is a long-standing open problem in the area. Elias had shown that $T(n)\leq 2\times (3/2)n$ and prior to our work the best upper bound was $T(n)\leq 0.6937 \times (3/2)n$ due to Kurz'23. We improve this bound to $T(n)\leq c \times n{-2/5}\times (3/2)n$ where $c$ is an absolute constant.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: