Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diffusion Cross-domain Recommendation (2402.02182v1)

Published 3 Feb 2024 in cs.IR and cs.LG

Abstract: It is always a challenge for recommender systems to give high-quality outcomes to cold-start users. One potential solution to alleviate the data sparsity problem for cold-start users in the target domain is to add data from the auxiliary domain. Finding a proper way to extract knowledge from an auxiliary domain and transfer it into a target domain is one of the main objectives for cross-domain recommendation (CDR) research. Among the existing methods, mapping approach is a popular one to implement cross-domain recommendation models (CDRs). For models of this type, a mapping module plays the role of transforming data from one domain to another. It primarily determines the performance of mapping approach CDRs. Recently, diffusion probability models (DPMs) have achieved impressive success for image synthesis related tasks. They involve recovering images from noise-added samples, which can be viewed as a data transformation process with outstanding performance. To further enhance the performance of CDRs, we first reveal the potential connection between DPMs and mapping modules of CDRs, and then propose a novel CDR model named Diffusion Cross-domain Recommendation (DiffCDR). More specifically, we first adopt the theory of DPM and design a Diffusion Module (DIM), which generates user's embedding in target domain. To reduce the negative impact of randomness introduced in DIM and improve the stability, we employ an Alignment Module to produce the aligned user embeddings. In addition, we consider the label data of the target domain and form the task-oriented loss function, which enables our DiffCDR to adapt to specific tasks. By conducting extensive experiments on datasets collected from reality, we demonstrate the effectiveness and adaptability of DiffCDR to outperform baseline models on various CDR tasks in both cold-start and warm-start scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub