Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sample, estimate, aggregate: A recipe for causal discovery foundation models (2402.01929v3)

Published 2 Feb 2024 in cs.LG and stat.ML

Abstract: Causal discovery, the task of inferring causal structure from data, has the potential to uncover mechanistic insights from biological experiments, especially those involving perturbations. However, causal discovery algorithms over larger sets of variables tend to be brittle against misspecification or when data are limited. For example, single-cell transcriptomics measures thousands of genes, but the nature of their relationships is not known, and there may be as few as tens of cells per intervention setting. To mitigate these challenges, we propose a foundation model-inspired approach: a supervised model trained on large-scale, synthetic data to predict causal graphs from summary statistics -- like the outputs of classical causal discovery algorithms run over subsets of variables and other statistical hints like inverse covariance. Our approach is enabled by the observation that typical errors in the outputs of a discovery algorithm remain comparable across datasets. Theoretically, we show that the model architecture is well-specified, in the sense that it can recover a causal graph consistent with graphs over subsets. Empirically, we train the model to be robust to misspecification and distribution shift using diverse datasets. Experiments on biological and synthetic data confirm that this model generalizes well beyond its training set, runs on graphs with hundreds of variables in seconds, and can be easily adapted to different underlying data assumptions.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets