Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fortifying Ethical Boundaries in AI: Advanced Strategies for Enhancing Security in Large Language Models (2402.01725v1)

Published 27 Jan 2024 in cs.CL and cs.AI

Abstract: Recent advancements in LLMs have significantly enhanced capabilities in natural language processing and artificial intelligence. These models, including GPT-3.5 and LLaMA-2, have revolutionized text generation, translation, and question-answering tasks due to the transformative Transformer model. Despite their widespread use, LLMs present challenges such as ethical dilemmas when models are compelled to respond inappropriately, susceptibility to phishing attacks, and privacy violations. This paper addresses these challenges by introducing a multi-pronged approach that includes: 1) filtering sensitive vocabulary from user input to prevent unethical responses; 2) detecting role-playing to halt interactions that could lead to 'prison break' scenarios; 3) implementing custom rule engines to restrict the generation of prohibited content; and 4) extending these methodologies to various LLM derivatives like Multi-Model LLMs (MLLMs). Our approach not only fortifies models against unethical manipulations and privacy breaches but also maintains their high performance across tasks. We demonstrate state-of-the-art performance under various attack prompts, without compromising the model's core functionalities. Furthermore, the introduction of differentiated security levels empowers users to control their personal data disclosure. Our methods contribute to reducing social risks and conflicts arising from technological abuse, enhance data protection, and promote social equity. Collectively, this research provides a framework for balancing the efficiency of question-answering systems with user privacy and ethical standards, ensuring a safer user experience and fostering trust in AI technology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube