Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning Based Amharic Chatbot for FAQs in Universities (2402.01720v2)

Published 26 Jan 2024 in cs.CY, cs.AI, cs.CL, and cs.LG

Abstract: University students often spend a considerable amount of time seeking answers to common questions from administrators or teachers. This can become tedious for both parties, leading to a need for a solution. In response, this paper proposes a chatbot model that utilizes natural language processing and deep learning techniques to answer frequently asked questions (FAQs) in the Amharic language. Chatbots are computer programs that simulate human conversation through the use of AI, acting as a virtual assistant to handle questions and other tasks. The proposed chatbot program employs tokenization, normalization, stop word removal, and stemming to analyze and categorize Amharic input sentences. Three machine learning model algorithms were used to classify tokens and retrieve appropriate responses: Support Vector Machine (SVM), Multinomial Na\"ive Bayes, and deep neural networks implemented through TensorFlow, Keras, and NLTK. The deep learning model achieved the best results with 91.55% accuracy and a validation loss of 0.3548 using an Adam optimizer and SoftMax activation function. The chatbot model was integrated with Facebook Messenger and deployed on a Heroku server for 24-hour accessibility. The experimental results demonstrate that the chatbot framework achieved its objectives and effectively addressed challenges such as Amharic Fidel variation, morphological variation, and lexical gaps. Future research could explore the integration of Amharic WordNet to narrow the lexical gap and support more complex questions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: