Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM-based NLG Evaluation: Current Status and Challenges (2402.01383v3)

Published 2 Feb 2024 in cs.CL

Abstract: Evaluating natural language generation (NLG) is a vital but challenging problem in natural language processing. Traditional evaluation metrics mainly capturing content (e.g. n-gram) overlap between system outputs and references are far from satisfactory, and LLMs such as ChatGPT have demonstrated great potential in NLG evaluation in recent years. Various automatic evaluation methods based on LLMs have been proposed, including metrics derived from LLMs, prompting LLMs, fine-tuning LLMs, and human-LLM collaborative evaluation. In this survey, we first give a taxonomy of LLM-based NLG evaluation methods, and discuss their pros and cons, respectively. Lastly, we discuss several open problems in this area and point out future research directions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets