Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regularized boosting with an increasing coefficient magnitude stop criterion as meta-learner in hyperparameter optimization stacking ensemble (2402.01379v1)

Published 2 Feb 2024 in cs.LG

Abstract: In Hyperparameter Optimization (HPO), only the hyperparameter configuration with the best performance is chosen after performing several trials, then, discarding the effort of training all the models with every hyperparameter configuration trial and performing an ensemble of all them. This ensemble consists of simply averaging the model predictions or weighting the models by a certain probability. Recently, other more sophisticated ensemble strategies, such as the Caruana method or the stacking strategy has been proposed. On the one hand, the Caruana method performs well in HPO ensemble, since it is not affected by the effects of multicollinearity, which is prevalent in HPO. It just computes the average over a subset of predictions with replacement. But it does not benefit from the generalization power of a learning process. On the other hand, stacking methods include a learning procedure since a meta-learner is required to perform the ensemble. Yet, one hardly finds advice about which meta-learner is adequate. Besides, some meta-learners may suffer from the effects of multicollinearity or need to be tuned to reduce them. This paper explores meta-learners for stacking ensemble in HPO, free of hyperparameter tuning, able to reduce the effects of multicollinearity and considering the ensemble learning process generalization power. At this respect, the boosting strategy seems promising as a stacking meta-learner. In fact, it completely removes the effects of multicollinearity. This paper also proposes an implicit regularization in the classical boosting method and a novel non-parametric stop criterion suitable only for boosting and specifically designed for HPO. The synergy between these two improvements over boosting exhibits competitive and promising predictive power performance compared to other existing meta-learners and ensemble approaches for HPO other than the stacking ensemble.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets