Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions (2402.01116v5)
Abstract: We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
- T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in 2020 ECCV. Springer, 2020.
- Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames, “Interactive multi-modal motion planning with branch model predictive control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, 2022.
- S. H. Nair, H. Lee, E. Joa, Y. Wang, H. E. Tseng, and F. Borrelli, “Predictive control for autonomous driving with uncertain, multi-modal predictions,” arXiv preprint arXiv:2310.20561, 2023.
- J. L. V. Espinoza, A. Liniger, W. Schwarting, D. Rus, and L. Van Gool, “Deep interactive motion prediction and planning: Playing games with motion prediction models,” in Learning for Dynamics and Control Conference. PMLR, 2022.
- E. L. Zhu and F. Borrelli, “A sequential quadratic programming approach to the solution of open-loop generalized nash equilibria,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.
- L. Peters, A. Bajcsy, C.-Y. Chiu, D. Fridovich-Keil, F. Laine, L. Ferranti, and J. Alonso-Mora, “Contingency games for multi-agent interaction,” IEEE Robotics and Automation Letters, 2024.
- E. Leurent and J. Mercat, “Social attention for autonomous decision-making in dense traffic,” 2019.
- Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, et al., “Planning-oriented autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
- T. Brüdigam, M. Olbrich, D. Wollherr, and M. Leibold, “Stochastic model predictive control with a safety guarantee for automated driving,” IEEE Transactions on Intelligent Vehicles, 2021.
- F. Baldini, R. Foust, A. Bacula, C. M. Chilan, S. J. Chung, S. Bandyopadhyay, A. Rahmani, J. P. De La Croix, and F. Y. Hadaegh, “Spacecraft trajectory planning using spherical expansion and sequential convex programming,” in AIAA/AAS Astrodynamics Specialist Conference, 2016. AIAA, 2016.
- S. H. Nair, E. H. Tseng, and F. Borrelli, “Collision avoidance for dynamic obstacles with uncertain predictions using model predictive control,” arXiv preprint arXiv:2208.03529, 2022.
- A. Ali, E. Wong, and J. Z. Kolter, “A semismooth newton method for fast, generic convex programming,” in International Conference on Machine Learning. PMLR, 2017.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, 2014.
- J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.
- T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” 2021.
- B. Ivanovic, A. Elhafsi, G. Rosman, A. Gaidon, and M. Pavone, “Mats: An interpretable trajectory forecasting representation for planning and control,” 2021.
- K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” 2014.
- G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” 2016.
- K. Kreutz and J. Eggert, “Analysis of the generalized intelligent driver model (gidm) for uncontrolled intersections,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
- D. Michie, M. Bain, and J. Hayes-Michie, “Cognitive models from subcognitive skills,” IEE control engineering series, vol. 44, 1990.
- J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, 2018.
- R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, 1999.
- I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2017.
- Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
- H. Kim and F. Borrelli, “Facilitating cooperative and distributed multi-vehicle lane change maneuvers,” IFAC-PapersOnLine, vol. 56, no. 2, 2023, 22nd IFAC World Congress.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.