Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Low Acceptance Agreement Tests via Bounded-Degree Symplectic HDXs (2402.01078v2)

Published 2 Feb 2024 in cs.CC, math.CO, and math.GR

Abstract: We solve the derandomized direct product testing question in the low acceptance regime, by constructing new high dimensional expanders that have no small connected covers. We show that our complexes have swap cocycle expansion, which allows us to deduce the agreement theorem by relying on previous work. Derandomized direct product testing, also known as agreement testing, is the following problem. Let X be a family of k-element subsets of [n] and let ${f_s:s\to\Sigma}{s\in X}$ be an ensemble of local functions, each defined over a subset $s\subset [n]$. Suppose that we run the following so-called agreement test: choose a random pair of sets $s_1,s_2\in X$ that intersect on $\sqrt k$ elements, and accept if $f{s_1},f_{s_2}$ agree on the elements in $s_1\cap s_2$. We denote the success probability of this test by $Agr({f_s})$. Given that $Agr({f_s})=\epsilon>0$, is there a global function $G:[n]\to\Sigma$ such that $f_s = G|_s$ for a non-negligible fraction of $s\in X$ ? We construct a family X of k-subsets of $[n]$ such that $|X| = O(n)$ and such that it satisfies the low acceptance agreement theorem. Namely, $Agr ({f_s}) > \epsilon \; \; \longrightarrow$ there is a function $G:[n]\to\Sigma$ such that $\Pr_s[f_s\overset{0.99}{\approx} G|_s]\geq poly(\epsilon)$. A key idea is to replace the well-studied LSV complexes by symplectic high dimensional expanders (HDXs). The family X is just the k-faces of the new symplectic HDXs. The later serve our needs better since their fundamental group satisfies the congruence subgroup property, which implies that they lack small covers. We also give a polynomial-time algorithm to construct this family of symplectic HDXs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com