Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification (2402.01034v3)

Published 1 Feb 2024 in eess.IV and cs.CV

Abstract: AI has the potential to revolutionize diagnosis and segmentation in medical imaging. However, development and clinical implementation face multiple challenges including limited data availability, lack of generalizability, and the necessity to incorporate multi-modal data effectively. A foundation model, which is a large-scale pre-trained AI model, offers a versatile base that can be adapted to a variety of specific tasks and contexts. Here, we present VIsualization and Segmentation Masked AutoEncoder (VIS-MAE), novel model weights specifically designed for medical imaging. Specifically, VIS-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities (CT, MR, PET,X-rays, and ultrasound), using self-supervised learning techniques. It is then adapted to classification and segmentation tasks using explicit labels. VIS-MAE has high label efficiency, outperforming several benchmark models in both in-domain and out-of-domain applications. In addition, VIS-MAE has improved label efficiency as it can achieve similar performance to other models with a reduced amount of labeled training data (50% or 80%) compared to other pre-trained weights. VIS-MAE represents a significant advancement in medical imaging AI, offering a generalizable and robust solution for improving segmentation and classification tasks while reducing the data annotation workload. The source code of this work is available at https://github.com/lzl199704/VIS-MAE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.