Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An Analysis of the Variance of Diffusion-based Speech Enhancement (2402.00811v2)

Published 1 Feb 2024 in eess.AS, cs.LG, and cs.SD

Abstract: Diffusion models proved to be powerful models for generative speech enhancement. In recent SGMSE+ approaches, training involves a stochastic differential equation for the diffusion process, adding both Gaussian and environmental noise to the clean speech signal gradually. The speech enhancement performance varies depending on the choice of the stochastic differential equation that controls the evolution of the mean and the variance along the diffusion processes when adding environmental and Gaussian noise. In this work, we highlight that the scale of the variance is a dominant parameter for speech enhancement performance and show that it controls the tradeoff between noise attenuation and speech distortions. More concretely, we show that a larger variance increases the noise attenuation and allows for reducing the computational footprint, as fewer function evaluations for generating the estimate are required

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.