Papers
Topics
Authors
Recent
2000 character limit reached

Theoretical Understanding of In-Context Learning in Shallow Transformers with Unstructured Data (2402.00743v2)

Published 1 Feb 2024 in cs.LG, cs.CL, and stat.ML

Abstract: LLMs are powerful models that can learn concepts at the inference stage via in-context learning (ICL). While theoretical studies, e.g., \cite{zhang2023trained}, attempt to explain the mechanism of ICL, they assume the input $x_i$ and the output $y_i$ of each demonstration example are in the same token (i.e., structured data). However, in real practice, the examples are usually text input, and all words, regardless of their logic relationship, are stored in different tokens (i.e., unstructured data \cite{wibisono2023role}). To understand how LLMs learn from the unstructured data in ICL, this paper studies the role of each component in the transformer architecture and provides a theoretical understanding to explain the success of the architecture. In particular, we consider a simple transformer with one/two attention layers and linear regression tasks for the ICL prediction. We observe that (1) a transformer with two layers of (self-)attentions with a look-ahead attention mask can learn from the prompt in the unstructured data, and (2) positional encoding can match the $x_i$ and $y_i$ tokens to achieve a better ICL performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 24 likes about this paper.