Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Cocco: Hardware-Mapping Co-Exploration towards Memory Capacity-Communication Optimization (2402.00629v1)

Published 1 Feb 2024 in cs.AR

Abstract: Memory is a critical design consideration in current data-intensive DNN accelerators, as it profoundly determines energy consumption, bandwidth requirements, and area costs. As DNN structures become more complex, a larger on-chip memory capacity is required to reduce data movement overhead, but at the expense of silicon costs. Some previous works have proposed memory-oriented optimizations, such as different data reuse and layer fusion schemes. However, these methods are not general and potent enough to cope with various graph structures. In this paper, we explore the intrinsic connection between network structures and memory features to optimize both hardware and mapping. First, we introduce a graph-level execution scheme with a corresponding dataflow and memory management method. This scheme enables the execution of arbitrary graph patterns with high data reuse and low hardware overhead. Subsequently, we propose Cocco, a hardware-mapping co-exploration framework leveraging graph-level features of networks. It aims to minimize communication overhead, such as energy consumption and bandwidth requirements, with a smaller memory capacity. We formulate the graph-partition scheduling and memory configuration search as an optimization problem and employ a genetic-based method to achieve efficient co-exploration for large and irregular networks. Experiments demonstrate that Cocco obtains lower external memory access, lower bandwidth requirements, and more stable optimization for graph partition compared to the greedy algorithm and dynamic programming introduced in prior works. Cocco also reduces the costs by 1.89% to 50.33% using co-exploration compared to other typical methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube