Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Diffusion-based Light Field Synthesis (2402.00575v1)

Published 1 Feb 2024 in cs.CV

Abstract: Light fields (LFs), conducive to comprehensive scene radiance recorded across angular dimensions, find wide applications in 3D reconstruction, virtual reality, and computational photography.However, the LF acquisition is inevitably time-consuming and resource-intensive due to the mainstream acquisition strategy involving manual capture or laborious software synthesis.Given such a challenge, we introduce LFdiff, a straightforward yet effective diffusion-based generative framework tailored for LF synthesis, which adopts only a single RGB image as input.LFdiff leverages disparity estimated by a monocular depth estimation network and incorporates two distinctive components: a novel condition scheme and a noise estimation network tailored for LF data.Specifically, we design a position-aware warping condition scheme, enhancing inter-view geometry learning via a robust conditional signal.We then propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields with enhanced generalization capability.Additionally, comprehensive results affirm the broad applicability of the generated LF data, spanning applications like LF super-resolution and refocusing.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.