Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Towards AI-Assisted Synthesis of Verified Dafny Methods (2402.00247v2)

Published 1 Feb 2024 in cs.SE and cs.PL

Abstract: LLMs show great promise in many domains, including programming. A promise is easy to make but hard to keep, and LLMs often fail to keep their promises, generating erroneous code. A promising avenue to keep models honest is to incorporate formal verification: generating programs' specifications as well as code so that the code can be proved correct with respect to the specifications. Unfortunately, existing LLMs show a severe lack of proficiency in verified programming. In this paper, we demonstrate how to improve two pretrained models' proficiency in the Dafny verification-aware language. Using 178 problems from the MBPP dataset, we prompt two contemporary models (GPT-4 and PaLM-2) to synthesize Dafny methods. We use three different types of prompts: a direct Contextless prompt; a Signature prompt that includes a method signature and test cases, and a Chain of Thought (CoT) prompt that decomposes the problem into steps and includes retrieval augmentation generated example problems and solutions. Our results show that GPT-4 performs better than PaLM-2 on these tasks and that both models perform best with the retrieval augmentation generated CoT prompt. GPT-4 was able to generate verified, human-evaluated, Dafny methods for 58% of the problems, however, GPT-4 managed only 19% of the problems with the Contextless prompt, and even fewer (10%) for the Signature prompt. We are thus able to contribute 153 verified Dafny solutions to MBPP problems, 50 that we wrote manually, and 103 synthesized by GPT-4. Our results demonstrate that the benefits of formal program verification are now within reach of code generating LLMs...

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 47 likes.

Upgrade to Pro to view all of the tweets about this paper: