Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Solving High-dimensional Parametric Elliptic Equation Using Tensor Neural Network (2402.00040v1)

Published 15 Jan 2024 in math.NA and cs.NA

Abstract: In this paper, we introduce a tensor neural network based machine learning method for solving the elliptic partial differential equations with random coefficients in a bounded physical domain. With the help of tensor product structure, we can transform the high-dimensional integrations of tensor neural network functions to one-dimensional integrations which can be computed with the classical quadrature schemes with high accuracy. The complexity of its calculation can be reduced from the exponential scale to a polynomial scale. The corresponding machine learning method is designed for solving high-dimensional parametric elliptic equations. Some numerical examples are provided to validate the accuracy and efficiency of the proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.