Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

PVLR: Prompt-driven Visual-Linguistic Representation Learning for Multi-Label Image Recognition (2401.17881v1)

Published 31 Jan 2024 in cs.CV

Abstract: Multi-label image recognition is a fundamental task in computer vision. Recently, vision-LLMs have made notable advancements in this area. However, previous methods often failed to effectively leverage the rich knowledge within LLMs and instead incorporated label semantics into visual features in a unidirectional manner. In this paper, we propose a Prompt-driven Visual-Linguistic Representation Learning (PVLR) framework to better leverage the capabilities of the linguistic modality. In PVLR, we first introduce a dual-prompting strategy comprising Knowledge-Aware Prompting (KAP) and Context-Aware Prompting (CAP). KAP utilizes fixed prompts to capture the intrinsic semantic knowledge and relationships across all labels, while CAP employs learnable prompts to capture context-aware label semantics and relationships. Later, we propose an Interaction and Fusion Module (IFM) to interact and fuse the representations obtained from KAP and CAP. In contrast to the unidirectional fusion in previous works, we introduce a Dual-Modal Attention (DMA) that enables bidirectional interaction between textual and visual features, yielding context-aware label representations and semantic-related visual representations, which are subsequently used to calculate similarities and generate final predictions for all labels. Extensive experiments on three popular datasets including MS-COCO, Pascal VOC 2007, and NUS-WIDE demonstrate the superiority of PVLR.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.