Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graph Transformers without Positional Encodings (2401.17791v3)

Published 31 Jan 2024 in cs.LG and cs.AI

Abstract: Recently, Transformers for graph representation learning have become increasingly popular, achieving state-of-the-art performance on a wide-variety of graph datasets, either alone or in combination with message-passing graph neural networks (MP-GNNs). Infusing graph inductive-biases in the innately structure-agnostic transformer architecture in the form of structural or positional encodings (PEs) is key to achieving these impressive results. However, designing such encodings is tricky and disparate attempts have been made to engineer such encodings including Laplacian eigenvectors, relative random-walk probabilities (RRWP), spatial encodings, centrality encodings, edge encodings etc. In this work, we argue that such encodings may not be required at all, provided the attention mechanism itself incorporates information about the graph structure. We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph, and empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks. Additionally, we theoretically prove that Eigenformer can express various graph structural connectivity matrices, which is particularly essential when learning over smaller graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: