Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence of Expectation-Maximization Algorithm with Mixed-Integer Optimization (2401.17763v2)

Published 31 Jan 2024 in eess.SP and stat.ML

Abstract: The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function with respect to all the unknown parameters (optimization variables). The requirement is not met when parameters comprise both discrete and continuous variables, making the convergence analysis nontrivial. This paper introduces a set of conditions that ensure the convergence of a specific class of EM algorithms that estimate a mixture of discrete and continuous parameters. Our results offer a new analysis technique for iterative algorithms that solve mixed-integer non-linear optimization problems. As a concrete example, we prove the convergence of the EM-based sparse Bayesian learning algorithm in [1] that estimates the state of a linear dynamical system with jointly sparse inputs and bursty missing observations. Our results establish that the algorithm in [1] converges to the set of stationary points of the maximum likelihood cost with respect to the continuous optimization variables.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 42 likes.

Upgrade to Pro to view all of the tweets about this paper: