Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation (2401.17630v1)

Published 31 Jan 2024 in cs.IR

Abstract: Federated recommender systems (FedRecs) have gained significant attention for their potential to protect user's privacy by keeping user privacy data locally and only communicating model parameters/gradients to the server. Nevertheless, the currently existing architecture of FedRecs assumes that all users have the same 0-privacy budget, i.e., they do not upload any data to the server, thus overlooking those users who are less concerned about privacy and are willing to upload data to get a better recommendation service. To bridge this gap, this paper explores a user-governed data contribution federated recommendation architecture where users are free to take control of whether they share data and the proportion of data they share to the server. To this end, this paper presents a cloud-device collaborative graph neural network federated recommendation model, named CDCGNNFed. It trains user-centric ego graphs locally, and high-order graphs based on user-shared data in the server in a collaborative manner via contrastive learning. Furthermore, a graph mending strategy is utilized to predict missing links in the graph on the server, thus leveraging the capabilities of graph neural networks over high-order graphs. Extensive experiments were conducted on two public datasets, and the results demonstrate the effectiveness of the proposed method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.