Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Error analysis of a collocation method on graded meshes for nonlocal diffusion problems with weakly singular kernels (2401.17567v1)

Published 31 Jan 2024 in math.NA and cs.NA

Abstract: Can graded meshes yield more accurate numerical solution than uniform meshes? A time-dependent nonlocal diffusion problem with a weakly singular kernel is considered using collocation method. For its steady-state counterpart, under the sufficiently smooth solution, we first clarify that the standard graded meshes are worse than uniform meshes and may even lead to divergence; instead, an optimal convergence rate arises in so-called anomalous graded meshes. Furthermore, under low regularity solutions, it may suffer from a severe order reduction in (Chen, Qi, Shi and Wu, IMA J. Numer. Anal., 41 (2021) 3145--3174). In this case, conversely, a sharp error estimates appears in standard graded meshes, but offering far less than first-order accuracy. For the time-dependent case, however, second-order convergence can be achieved on graded meshes. The related analysis are easily extended for certain multidimensional problems. Numerical results are provided that confirm the sharpness of the error estimates.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.