A criterion for Andrásfai--Erdős--Sós type theorems and applications (2401.17219v4)
Abstract: The classical Andr\'{a}sfai--Erd\H{o}s--S\'{o}s Theorem states that for $\ell\ge 2$, every $n$-vertex $K_{\ell+1}$-free graph with minimum degree greater than $\frac{3\ell-4}{3\ell-1}n$ must be $\ell$-partite. We establish a simple criterion for $r$-graphs, $r \geq 2$, to exhibit an Andr\'{a}sfai--Erd\H{o}s--S\'{o}s type property, also known as degree-stability. This leads to a classification of most previously studied hypergraph families with this property. An immediate application of this result, combined with a general theorem by Keevash--Lenz--Mubayi, solves the spectral Tur\'{a}n problems for a large class of hypergraphs. For every $r$-graph $F$ with degree-stability, there is a simple algorithm to decide the $F$-freeness of an $n$-vertex $r$-graph with minimum degree greater than $(\pi(F) - \varepsilon_F)\binom{n}{r-1}$ in time $O(nr)$, where $\varepsilon_F >0$ is a constant. In particular, for the complete graph $K_{\ell+1}$, we can take $\varepsilon_{K_{\ell+1}} = (3\ell2-\ell){-1}$, and this bound is tight up to some multiplicative constant factor unless $\mathbf{W[1]} = \mathbf{FPT}$. Based on a result by Chen--Huang--Kanj--Xia, we further show that for every fixed $C > 0$, this problem cannot be solved in time $n{o(\ell)}$ if we replace $\varepsilon_{K_{\ell+1}}$ with $(C\ell){-1}$ unless $\mathbf{ETH}$ fails. Furthermore, we apply the degree-stability of $K_{\ell+1}$ to decide the $K_{\ell+1}$-freeness of graphs whose size is close to the Tur\'{a}n bound in time $(\ell+1)n2$, partially improving a recent result by Fomin--Golovach--Sagunov--Simonov. As an intermediate step, we show that for a specific class of $r$-graphs $F$, the (surjective) $F$-coloring problem can be solved in time $O(nr)$, provided the input $r$-graph has $n$ vertices and a large minimum degree, refining several previous results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.