Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A criterion for Andrásfai--Erdős--Sós type theorems and applications (2401.17219v4)

Published 30 Jan 2024 in math.CO and cs.CC

Abstract: The classical Andr\'{a}sfai--Erd\H{o}s--S\'{o}s Theorem states that for $\ell\ge 2$, every $n$-vertex $K_{\ell+1}$-free graph with minimum degree greater than $\frac{3\ell-4}{3\ell-1}n$ must be $\ell$-partite. We establish a simple criterion for $r$-graphs, $r \geq 2$, to exhibit an Andr\'{a}sfai--Erd\H{o}s--S\'{o}s type property, also known as degree-stability. This leads to a classification of most previously studied hypergraph families with this property. An immediate application of this result, combined with a general theorem by Keevash--Lenz--Mubayi, solves the spectral Tur\'{a}n problems for a large class of hypergraphs. For every $r$-graph $F$ with degree-stability, there is a simple algorithm to decide the $F$-freeness of an $n$-vertex $r$-graph with minimum degree greater than $(\pi(F) - \varepsilon_F)\binom{n}{r-1}$ in time $O(nr)$, where $\varepsilon_F >0$ is a constant. In particular, for the complete graph $K_{\ell+1}$, we can take $\varepsilon_{K_{\ell+1}} = (3\ell2-\ell){-1}$, and this bound is tight up to some multiplicative constant factor unless $\mathbf{W[1]} = \mathbf{FPT}$. Based on a result by Chen--Huang--Kanj--Xia, we further show that for every fixed $C > 0$, this problem cannot be solved in time $n{o(\ell)}$ if we replace $\varepsilon_{K_{\ell+1}}$ with $(C\ell){-1}$ unless $\mathbf{ETH}$ fails. Furthermore, we apply the degree-stability of $K_{\ell+1}$ to decide the $K_{\ell+1}$-freeness of graphs whose size is close to the Tur\'{a}n bound in time $(\ell+1)n2$, partially improving a recent result by Fomin--Golovach--Sagunov--Simonov. As an intermediate step, we show that for a specific class of $r$-graphs $F$, the (surjective) $F$-coloring problem can be solved in time $O(nr)$, provided the input $r$-graph has $n$ vertices and a large minimum degree, refining several previous results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.