Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GAISSALabel: A tool for energy labeling of ML models (2401.17150v1)

Published 30 Jan 2024 in cs.SE

Abstract: Background: The increasing environmental impact of Information Technologies, particularly in Machine Learning (ML), highlights the need for sustainable practices in software engineering. The escalating complexity and energy consumption of ML models need tools for assessing and improving their energy efficiency. Goal: This paper introduces GAISSALabel, a web-based tool designed to evaluate and label the energy efficiency of ML models. Method: GAISSALabel is a technology transfer development from a former research on energy efficiency classification of ML, consisting of a holistic tool for assessing both the training and inference phases of ML models, considering various metrics such as power draw, model size efficiency, CO2e emissions and more. Results: GAISSALabel offers a labeling system for energy efficiency, akin to labels on consumer appliances, making it accessible to ML stakeholders of varying backgrounds. The tool's adaptability allows for customization in the proposed labeling system, ensuring its relevance in the rapidly evolving ML field. Conclusions: GAISSALabel represents a significant step forward in sustainable software engineering, offering a solution for balancing high-performance ML models with environmental impacts. The tool's effectiveness and market relevance will be further assessed through planned evaluations using the Technology Acceptance Model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: