Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

H-SynEx: Using synthetic images and ultra-high resolution ex vivo MRI for hypothalamus subregion segmentation (2401.17104v2)

Published 30 Jan 2024 in eess.IV and cs.CV

Abstract: The hypothalamus is a small structure located in the center of the brain and is involved in significant functions such as sleeping, temperature, and appetite control. Various neurological disorders are also associated with hypothalamic abnormalities. Automated image analysis of this structure from brain MRI is thus highly desirable to study the hypothalamus in vivo. However, most automated segmentation tools currently available focus exclusively on T1w images. In this study, we introduce H-SynEx, a machine learning method for automated segmentation of hypothalamic subregions that generalizes across different MRI sequences and resolutions without retraining. H-synEx was trained with synthetic images built from label maps derived from ultra-high resolution ex vivo MRI scans, which enables finer-grained manual segmentation when compared with 1mm isometric in vivo images. We validated our method using Dice Coefficient (DSC) and Average Hausdorff distance (AVD) across in vivo images from six different datasets with six different MRI sequences (T1, T2, proton density, quantitative T1, fractional anisotrophy, and FLAIR). Statistical analysis compared hypothalamic subregion volumes in controls, Alzheimer's disease (AD), and behavioral variant frontotemporal dementia (bvFTD) subjects using the Area Under the Receiving Operating Characteristic curve (AUROC) and Wilcoxon rank sum test. Our results show that H-SynEx successfully leverages information from ultra-high resolution scans to segment in vivo from different MRI sequences. Our automated segmentation was able to discriminate controls versus Alzheimer's Disease patients on FLAIR images with 5mm spacing. H-SynEx is openly available at https://github.com/liviamarodrigues/hsynex.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.