Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-central panorama indoor dataset (2401.17075v1)

Published 30 Jan 2024 in cs.DB and cs.CV

Abstract: Omnidirectional images are one of the main sources of information for learning based scene understanding algorithms. However, annotated datasets of omnidirectional images cannot keep the pace of these learning based algorithms development. Among the different panoramas and in contrast to standard central ones, non-central panoramas provide geometrical information in the distortion of the image from which we can retrieve 3D information of the environment [2]. However, due to the lack of commercial non-central devices, up until now there was no dataset of these kinds of panoramas. In this data paper, we present the first dataset of non-central panoramas for indoor scene understanding. The dataset is composed by {\bf 2574} RGB non-central panoramas taken in around 650 different rooms. Each panorama has associated a depth map and annotations to obtain the layout of the room from the image as a structural edge map, list of corners in the image, the 3D corners of the room and the camera pose. The images are taken from photorealistic virtual environments and pixel-wise automatically annotated.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.