Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancing EEG Signal-Based Emotion Recognition with Synthetic Data: Diffusion Model Approach (2401.16878v2)

Published 30 Jan 2024 in cs.HC

Abstract: Emotions are crucial in human life, influencing perceptions, relationships, behaviour, and choices. Emotion recognition using Electroencephalography (EEG) in the Brain-Computer Interface (BCI) domain presents significant challenges, particularly the need for extensive datasets. This study aims to generate synthetic EEG samples that are similar to real samples but are distinct by augmenting noise to a conditional denoising diffusion probabilistic model, thus addressing the prevalent issue of data scarcity in EEG research. The proposed method is tested on the DEAP dataset, showcasing upto 4.21% improvement in classification performance when using synthetic data. This is higher compared to the traditional GAN-based and DDPM-based approaches. The proposed diffusion-based approach for EEG data generation appears promising in refining the accuracy of emotion recognition systems and marks a notable contribution to EEG-based emotion recognition. Our research further evaluates the effectiveness of state-of-the-art classifiers on EEG data, employing both real and synthetic data with varying noise levels.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets