Papers
Topics
Authors
Recent
2000 character limit reached

Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for Long-term Traffic Prediction (2401.16453v1)

Published 29 Jan 2024 in cs.LG and cs.AI

Abstract: Long-term traffic prediction has always been a challenging task due to its dynamic temporal dependencies and complex spatial dependencies. In this paper, we propose a model that combines hybrid Transformer and spatio-temporal self-supervised learning. The model enhances its robustness by applying adaptive data augmentation techniques at the sequence-level and graph-level of the traffic data. It utilizes Transformer to overcome the limitations of recurrent neural networks in capturing long-term sequences, and employs Chebyshev polynomial graph convolution to capture complex spatial dependencies. Furthermore, considering the impact of spatio-temporal heterogeneity on traffic speed, we design two self-supervised learning tasks to model the temporal and spatial heterogeneity, thereby improving the accuracy and generalization ability of the model. Experimental evaluations are conducted on two real-world datasets, PeMS04 and PeMS08, and the results are visualized and analyzed, demonstrating the superior performance of the proposed model.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 4 likes about this paper.