Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to Manipulate under Limited Information (2401.16412v4)

Published 29 Jan 2024 in cs.AI, cs.GT, cs.LG, cs.MA, and econ.TH

Abstract: By classic results in social choice theory, any reasonable preferential voting method sometimes gives individuals an incentive to report an insincere preference. The extent to which different voting methods are more or less resistant to such strategic manipulation has become a key consideration for comparing voting methods. Here we measure resistance to manipulation by whether neural networks of various sizes can learn to profitably manipulate a given voting method in expectation, given different types of limited information about how other voters will vote. We trained over 100,000 neural networks of 26 sizes to manipulate against 8 different voting methods, under 6 types of limited information, in committee-sized elections with 5-21 voters and 3-6 candidates. We find that some voting methods, such as Borda, are highly manipulable by networks with limited information, while others, such as Instant Runoff, are not, despite being quite profitably manipulated by an ideal manipulator with full information. For the three probability models for elections that we use, the overall least manipulable of the 8 methods we study are Condorcet methods, namely Minimax and Split Cycle.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube