Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian optimization as a flexible and efficient design framework for sustainable process systems (2401.16373v1)

Published 29 Jan 2024 in cs.LG and math.OC

Abstract: Bayesian optimization (BO) is a powerful technology for optimizing noisy expensive-to-evaluate black-box functions, with a broad range of real-world applications in science, engineering, economics, manufacturing, and beyond. In this paper, we provide an overview of recent developments, challenges, and opportunities in BO for design of next-generation process systems. After describing several motivating applications, we discuss how advanced BO methods have been developed to more efficiently tackle important problems in these applications. We conclude the paper with a summary of challenges and opportunities related to improving the quality of the probabilistic model, the choice of internal optimization procedure used to select the next sample point, and the exploitation of problem structure to improve sample efficiency.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.