Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A parallel preconditioner for the all-at-once linear system from evolutionary PDEs with Crank-Nicolson discretization (2401.16113v2)

Published 29 Jan 2024 in math.NA and cs.NA

Abstract: The Crank-Nicolson (CN) method is a well-known time integrator for evolutionary partial differential equations (PDEs) arising in many real-world applications. Since the solution at any time depends on the solution at previous time steps, the CN method is inherently difficult to parallelize. In this paper, we consider a parallel method for the solution of evolutionary PDEs with the CN scheme. Using an all-at-once approach, we can solve for all time steps simultaneously using a parallelizable over time preconditioner within a standard iterative method. Due to the diagonalization of the proposed preconditioner, we can prove that most eigenvalues of preconditioned matrices are equal to 1 and the others lie in the set: $\left{z\in\mathbb{C}: 1/(1 + \alpha) < |z| < 1/(1 - \alpha)~{\rm and}~\Re{\rm e}(z) > 0\right}$, where $0 < \alpha < 1$ is a free parameter. Besides, the efficient implementation of the proposed preconditioner is described. Given certain conditions, we prove that the preconditioned GMRES method exhibits a mesh-independent convergence rate. Finally, we will verify both theoretical findings and the efficacy of the proposed preconditioner via numerical experiments on financial option pricing PDEs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com