Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation for Automatic Diagnosis (2401.16107v1)

Published 29 Jan 2024 in cs.CL and cs.AI

Abstract: Automatic diagnosis is a significant application of AI in healthcare, where diagnoses are generated based on the symptom description of patients. Previous works have approached this task directly by modeling the relationship between the normalized symptoms and all possible diseases. However, in the clinical diagnostic process, patients are initially consulted by a general practitioner and, if necessary, referred to specialists in specific domains for a more comprehensive evaluation. The final diagnosis often emerges from a collaborative consultation among medical specialist groups. Recently, LLMs have shown impressive capabilities in natural language understanding. In this study, we adopt tuning-free LLM-based agents as medical practitioners and propose the Agent-derived Multi-Specialist Consultation (AMSC) framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases. Experimental results demonstrate the superiority of our approach compared with baselines. Notably, our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility. Furthermore, we delve into a novel perspective on the role of implicit symptoms within the context of automatic diagnosis.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: