Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models (2401.15927v1)

Published 29 Jan 2024 in cs.CL

Abstract: With the accelerating development of LLMs, many LLMs are beginning to be used in the Chinese K-12 education domain. The integration of LLMs and education is getting closer and closer, however, there is currently no benchmark for evaluating LLMs that focuses on the Chinese K-12 education domain. Therefore, there is an urgent need for a comprehensive natural language processing benchmark to accurately assess the capabilities of various LLMs in the Chinese K-12 education domain. To address this, we introduce the E-EVAL, the first comprehensive evaluation benchmark specifically designed for the Chinese K-12 education field. The E-EVAL consists of 4,351 multiple-choice questions at the primary, middle, and high school levels across a wide range of subjects, including Chinese, English, Politics, History, Ethics, Physics, Chemistry, Mathematics, and Geography. We conducted a comprehensive evaluation of E-EVAL on advanced LLMs, including both English-dominant and Chinese-dominant models. Findings show that Chinese-dominant models perform well compared to English-dominant models, with many scoring even above the GPT 4.0. However, almost all models perform poorly in complex subjects such as mathematics. We also found that most Chinese-dominant LLMs did not achieve higher scores at the primary school level compared to the middle school level. We observe that the mastery of higher-order knowledge by the model does not necessarily imply the mastery of lower-order knowledge as well. Additionally, the experimental results indicate that the Chain of Thought (CoT) technique is effective only for the challenging science subjects, while Few-shot prompting is more beneficial for liberal arts subjects. With E-EVAL, we aim to analyze the strengths and limitations of LLMs in educational applications, and to contribute to the progress and development of Chinese K-12 education and LLMs.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.